LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034 B.Sc. DEGREE EXAMINATION – CHEMISTRY SIXTH SEMESTER – APRIL 2010 ## CH 6609/CH 6603 - SYNTHETICS ORGANIC CHEMISTRY AND SPECTROSCOPY | Date & Time: 22/04/2010 / 9:00 - 12:00 | Dept. No. | Max.: 100 Marks | |--|-----------|-----------------| | | | | ## PART – A Answer **ALL** questions. $(10\times2=20 \text{ marks})$ - 1. Mention any two guiding principles for choosing alternate synthesis routes. - 2. What do you mean by construction reaction? - 3. Sodium borohydride is a very selective reducing agent justify. - 4. What is hydroboration reaction? - 5. What is TMS? Write its structure. - 6. A compound with molecular formula C₂H₄Br₂ shows two signals (one doublet and one quartet) suggest the structural formula. - 7. Calculate λ max value for the following. - 8. Cis -1,2 dichloro ethene is IR active whereas trans -1,2 dichloro ethene is IR inactive. Explain. - 9. Predict the product. - 10. Complete the reaction. ## PART – B Answer any **EIGHT** questions. (8×5=40 marks) - 11. What do you understand by linear and convergent synthesis? Explain. - 12. What is the significance of protecting group in organic synthesis? - 13. Discuss Corey's analysis on Synthon approach. - 14. Explain Birch reduction and predict the possible product in the reduction of o-xylene. - 15. Complete the following reactions. a) $$CH_3 - C \equiv C - CH_3 \xrightarrow{R_2BH/H_2O_2-NaOH}$$ b) $$CH_3 - (CH_2)_5 - CH = CH_2 \xrightarrow{peraad}$$ e) $$CH_3 - C \equiv C - CH_3 \xrightarrow{Ni}$$ (P.T.O.) | 16. Complete and discuss the Sterochemistry of the following reaction. | | |---|---| | 17. What are chromophores and auxochromes? Give two examples for | or each. | | 18. The analytical data and the molecular mass determination gave C ₈ I formula. The compound burns with a sooty flame and gave an oxin hydrochloride. Following absorption bands appear in its IR Spectru 2717 cm ⁻¹ (iii) 3060 cm ⁻¹ (iv) 1700cm ⁻¹ (v) 830 cm ⁻¹ . Deduce the compound. | ne with hydroxylamine
m: (i) 2825 cm ⁻¹ (ii) | | 19. Discuss the mechanism of the following reaction. | | | 20. Give the significance of Mclafferty rearrangement. | | | 21. Explain spin - spin splitting with a suitable example. | | | 22. Discuss shielding and deshielding of protons in NMR. | | | PART – C | | | Answer any FOUR questions. | (4×10=40 marks) | | 23. a) Explain Umpolung synthesis. | (5) | | b) Using Umpolung concept convert the following reaction. | (5) | | $n-C_5 H_{11} - C - H \rightarrow n-C_5 H_{11} - C - n-C_5 H_{11}$ | | | 24. Explain the following. a) Wolf-Kishner reduction. | (5) | | b) Applications of Catalytic hydrogenation. | (5) | | 25. a) Conjugated dienes absorb at a higher λ_{max} as compared to isola this statement. | ted diene. Comment on | | b) How will you differentiate between salicylic acid and m-hydroxy spectra. | benzoic acid using IR | | 26. (i) Suggest some common protective groups for functional groupsa) Carbonylb) alcoholc) amined) Carboxylic acid | like (4) | | (ii) A compound with molecular formula C ₆ H ₁₂ O ₂ shows four signals | S | | a) Singlet 1.1δ (6H) b) Singlet 2.1δ (3H) c) Singlet 2.6δ (2H) Propose its structure. | d) Singlet 3.9δ (1H) (6) | | 27. Using ethyl aceto acetate, how will you synthesise the following: | | | a) γ- keto valeric acid b) 2,5- pentanone c) Crotona | ldehyde d) n-butane. | | e) 4-methyl uracil. | | | 28.a) A compound with molecular weight 130 gave a negative iodoform in the UV Spectrum. In its IR Spectrum the various bands are 30 2862 cm ⁻¹ , 1722 cm ⁻¹ , 1605 cm ⁻¹ , 1575 cm ⁻¹ and 1462 cm ⁻¹ . In the there are three signals at 7.3 δ(multiplet 5H), 2.8 δ (doublet 2H) a | 042cm ⁻¹ , 2941 cm ⁻¹ ,
e NMR Spectrum | (7) (3) Identify the structure of the compound. b) Discuss any two fragmentation modes in mass spectroscopy.