LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

B.Sc. DEGREE EXAMINATION – CHEMISTRY SIXTH SEMESTER – APRIL 2010

CH 6609/CH 6603 - SYNTHETICS ORGANIC CHEMISTRY AND SPECTROSCOPY

Date & Time: 22/04/2010 / 9:00 - 12:00	Dept. No.	Max.: 100 Marks

PART – A

Answer **ALL** questions.

 $(10\times2=20 \text{ marks})$

- 1. Mention any two guiding principles for choosing alternate synthesis routes.
- 2. What do you mean by construction reaction?
- 3. Sodium borohydride is a very selective reducing agent justify.
- 4. What is hydroboration reaction?
- 5. What is TMS? Write its structure.
- 6. A compound with molecular formula C₂H₄Br₂ shows two signals (one doublet and one quartet) suggest the structural formula.
- 7. Calculate λ max value for the following.
- 8. Cis -1,2 dichloro ethene is IR active whereas trans -1,2 dichloro ethene is IR inactive. Explain.
- 9. Predict the product.
- 10. Complete the reaction.

PART – B

Answer any **EIGHT** questions.

(8×5=40 marks)

- 11. What do you understand by linear and convergent synthesis? Explain.
- 12. What is the significance of protecting group in organic synthesis?
- 13. Discuss Corey's analysis on Synthon approach.
- 14. Explain Birch reduction and predict the possible product in the reduction of o-xylene.
- 15. Complete the following reactions.

a)
$$CH_3 - C \equiv C - CH_3 \xrightarrow{R_2BH/H_2O_2-NaOH}$$

b)
$$CH_3 - (CH_2)_5 - CH = CH_2 \xrightarrow{peraad}$$

e)
$$CH_3 - C \equiv C - CH_3 \xrightarrow{Ni}$$

(P.T.O.)

16. Complete and discuss the Sterochemistry of the following reaction.	
17. What are chromophores and auxochromes? Give two examples for	or each.
18. The analytical data and the molecular mass determination gave C ₈ I formula. The compound burns with a sooty flame and gave an oxin hydrochloride. Following absorption bands appear in its IR Spectru 2717 cm ⁻¹ (iii) 3060 cm ⁻¹ (iv) 1700cm ⁻¹ (v) 830 cm ⁻¹ . Deduce the compound.	ne with hydroxylamine m: (i) 2825 cm ⁻¹ (ii)
19. Discuss the mechanism of the following reaction.	
20. Give the significance of Mclafferty rearrangement.	
21. Explain spin - spin splitting with a suitable example.	
22. Discuss shielding and deshielding of protons in NMR.	
PART – C	
Answer any FOUR questions.	(4×10=40 marks)
23. a) Explain Umpolung synthesis.	(5)
b) Using Umpolung concept convert the following reaction.	(5)
$n-C_5 H_{11} - C - H \rightarrow n-C_5 H_{11} - C - n-C_5 H_{11}$	
24. Explain the following. a) Wolf-Kishner reduction.	(5)
b) Applications of Catalytic hydrogenation.	(5)
25. a) Conjugated dienes absorb at a higher λ_{max} as compared to isola this statement.	ted diene. Comment on
 b) How will you differentiate between salicylic acid and m-hydroxy spectra. 	benzoic acid using IR
26. (i) Suggest some common protective groups for functional groupsa) Carbonylb) alcoholc) amined) Carboxylic acid	like (4)
(ii) A compound with molecular formula C ₆ H ₁₂ O ₂ shows four signals	S
 a) Singlet 1.1δ (6H) b) Singlet 2.1δ (3H) c) Singlet 2.6δ (2H) Propose its structure. 	d) Singlet 3.9δ (1H) (6)
27. Using ethyl aceto acetate, how will you synthesise the following:	
a) γ- keto valeric acid b) 2,5- pentanone c) Crotona	ldehyde d) n-butane.
e) 4-methyl uracil.	
28.a) A compound with molecular weight 130 gave a negative iodoform in the UV Spectrum. In its IR Spectrum the various bands are 30 2862 cm ⁻¹ , 1722 cm ⁻¹ , 1605 cm ⁻¹ , 1575 cm ⁻¹ and 1462 cm ⁻¹ . In the there are three signals at 7.3 δ(multiplet 5H), 2.8 δ (doublet 2H) a	042cm ⁻¹ , 2941 cm ⁻¹ , e NMR Spectrum

(7)

(3)

Identify the structure of the compound.

b) Discuss any two fragmentation modes in mass spectroscopy.